ENTIRE SOLUTIONS FOR A CLASS OF p-LAPLACE EQUATIONS IN R
نویسنده
چکیده
We study the entire solutions of the p-Laplace equation − div(|∇u|p−2∇u) + a(x, y)W ′(u(x, y)) = 0, (x, y) ∈ R where a(x, y) is a periodic in x and y, positive function. Here W : R → R is a two well potential. Via variational methods, we show that there is layered solution which is heteroclinic in x and periodic in y direction.
منابع مشابه
Existence of a ground state solution for a class of $p$-laplace equations
According to a class of constrained minimization problems, the Schwartz symmetrization process and the compactness lemma of Strauss, we prove that there is a nontrivial ground state solution for a class of $p$-Laplace equations without the Ambrosetti-Rabinowitz condition.
متن کاملExistence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator
The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.
متن کاملThe analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملApplication of Laplace decomposition method for Burgers-Huxley and Burgers-Fisher equations
In this paper, we apply the Laplace decomposition method to obtain a series solutions of the Burgers-Huxley and Burgers-Fisher equations. The technique is based on the application of Laplace transform to nonlinear partial differential equations. The method does not need linearization, weak nonlinearity assumptions or perturbation theory and the nonlinear terms can be easily handled by using the...
متن کاملAutoconvolution equations and generalized Mittag-Leffler functions
This article is devoted to study of the autoconvolution equations and generalized Mittag-Leffler functions. These types of equations are given in terms of the Laplace transform convolution of a function with itself. We state new classes of the autoconvolution equations of the first kind and show that the generalized Mittag-Leffler functions are solutions of these types of equations. In view of ...
متن کامل